Ontogeny of Mouse Vestibulo-Ocular Reflex Following Genetic or Environmental Alteration of Gravity Sensing
نویسندگان
چکیده
The vestibular organs consist of complementary sensors: the semicircular canals detect rotations while the otoliths detect linear accelerations, including the constant pull of gravity. Several fundamental questions remain on how the vestibular system would develop and/or adapt to prolonged changes in gravity such as during long-term space journey. How do vestibular reflexes develop if the appropriate assembly of otoliths and semi-circular canals is perturbed? The aim of present work was to evaluate the role of gravity sensing during ontogeny of the vestibular system. In otoconia-deficient mice (ied), gravity cannot be sensed and therefore maculo-ocular reflexes (MOR) were absent. While canals-related reflexes were present, the ied deficit also led to the abnormal spatial tuning of the horizontal angular canal-related VOR. To identify putative otolith-related critical periods, normal C57Bl/6J mice were subjected to 2G hypergravity by chronic centrifugation during different periods of development or adulthood (Adult-HG) and compared to non-centrifuged (control) C57Bl/6J mice. Mice exposed to hypergravity during development had completely normal vestibulo-ocular reflexes 6 months after end of centrifugation. Adult-HG mice all displayed major abnormalities in maculo-ocular reflexe one month after return to normal gravity. During the next 5 months, adaptation to normal gravity occurred in half of the individuals. In summary, genetic suppression of gravity sensing indicated that otolith-related signals might be necessary to ensure proper functioning of canal-related vestibular reflexes. On the other hand, exposure to hypergravity during development was not sufficient to modify durably motor behaviour. Hence, 2G centrifugation during development revealed no otolith-specific critical period.
منابع مشابه
Vestibulo-Ocular Reflex Abnormalities in Posterior Semicircular Canal Benign Paroxysmal Positional Vertigo: A Pilot Study
Introduction: Benign paroxysmal positional vertigo (BPPV), involving the semicircular canals, is one of the most common diseases of the inner ear. The video head impulse test (vHIT) is a new test that examines the function of the canals. This study aimed to investigate the vestibulo-ocular reflex (VOR) gain, gain asymmetry and saccades after stimulating all six canals in patients definitively d...
متن کاملVestibulo-ocular monitoring as a predictor of outcome after severe traumatic brain injury
INTRODUCTION Based on the knowledge that traumatic brainstem damage often leads to alteration in brainstem functions, including the vestibulo-ocular reflex, the present study is designed to determine whether prediction of outcome in the early phase after severe traumatic brain injury is possible by means of vestibulo-ocular monitoring. METHODS Vestibulo-ocular monitoring is based on video-ocu...
متن کاملThe dynamic characteristics of the mouse horizontal vestibulo-ocular and optokinetic response.
In the present study the optokinetic reflex, vestibulo-ocular reflex and their interaction were investigated in the mouse, using a modified subconjunctival search coil technique. Gain of the ocular response to sinusoidal optokinetic stimulation was relatively constant for peak velocities lower than 8 degrees /s, ranging from 0.7 to 0.8. Gain decreased proportionally to velocity for faster stimu...
متن کاملThree dimensional eye movements of squirrel monkeys following postrotatory tilt.
Three-dimensional squirrel monkey eye movements were recorded during and immediately following rotation around an earth-vertical yaw axis (160 degrees/s steady state, 100 degrees/s2 acceleration and deceleration). To study interactions between the horizontal angular vestibulo-ocular reflex (VOR) and head orientation, postrotatory VOR alignment was changed relative to gravity by tilting the head...
متن کاملOntogenetic rules and constraints of vestibulo-ocular reflex development.
Vestibulo-ocular reflexes (VOR) assist retinal image stabilization during vertebrate locomotion thereby ensuring accurate visual perception. The importance of this motor behavior for animal survival requires that the underlying circuitry and all individual components are fully developed and functional as soon as post-embryonic animals initiate self-motion. Recent progress on the genetic, molecu...
متن کامل